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Abstract

Consumers are faced with fixed amounts of storage in their devices, which conflicts with their
desire to access multimedia content that has increased in file size. The higher adoption and
the faster speeds of Internet access have brought opportunities in the form of the on-demand
streaming of content which more users are migrating to. However, existing solutions are
restricted by using a client-server model that causes a bottleneck due to a dependency on a
single content provider, or those that use peer-to-peer models experience file duplication or
issues with discovery of content. None satisfies the requirements for a system that is able to
distribute singular files between peers that can be identified using a singular identifier and which
partial read requests are serviced in real-time. This project aims to resolve this by providing
a comprehensive prototype solution that offers a custom peer-to-peer content addressable
protocol to distribute files between peers, and a virtual filesystem that exposes these files to
users and applications.
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Chapter 1

Introduction

1.1 Background of the problem
Users are likely to own a variety of devices that can access multimedia content, such as laptops,
mobile phones and gaming consoles (Laricchia, 2022). Over the last decade however, there
has been an exponential increase in the file sizes of multimedia content (Dinneen and Nguyen,
2021). Despite a reduction in the price of secondary storage (Kryder and C.S. Kim, 2009),
many of the latest devices such as smartphones usually have a non-extendable and fixed
amount of storage (H. Kim, Agrawal, and Ungureanu, 2012). This means that the amount of
storage is restricted by the decision the consumer made at purchase, who according to research
is also more likely to buy a device with a smaller storage capacity (Mohd Suki, 2013) due to
the increase in price with higher storage models. Therefore, these factors compound the issue
of growing file sizes for multimedia.
On the other hand, there is currently a prevalence in the adoption of high-speed Internet access
(Tan and Teo, 1998), and therefore content providers have reacted by providing numerous
on-demand streaming services to serve this growing audience of customers (Calboli, 2022).
They usually utilise a client-server model to serve content from centralised servers, which has
placed considerable strain on content providers to provide high-bandwidth connections and
availability, which existing protocols such as the Hypertext Transfer Protocol or HTTP (and
its successor HTTP/2) have not been designed for (Bishop, 2022).
In response, user communities have adopted alternative solutions that utilise peer-to-peer
models (Cunningham, Alexander, and Adilov, 2004), therefore allowing end-users to participate
and assist in the distribution of content and resulting in a substantial offload in bandwidth
from the content provider. In terms of peer-to-peer file sharing protocols, BitTorrent and
the InterPlantary File System (IPFS) are prominent ones that have seen significant usage.
In academia, several authors have proposed their own solutions, such as the SFS read-only
file system (Fu, Kaashoek, and Mazières, 2002) and the Andrew File System or AFS (John
Howard, 1988). None of these solutions (as I have also seen with client-server protocols) are
able to address all the issues faced as they only partially solve them, as I shall explore in the
literature, technology and data survey chapter.
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1.2 Proposed solution
I propose a solution to address this problem exhaustively via the creation of two separate
parts. The first part will be the design and reference implementation for a custom peer-to-peer
content-addressable file sharing protocol to address limitations with current existing protocols,
while the second part is the creation of a virtualised filesystem built on top of the custom
file sharing protocol to function as a front-end. Unlike conventional filesystems however, the
filesystem will be read-only with the files being displayed determined by the implementation.
The user will specify files they want to receive, and other peers will provide the clusters the
user wants over the network. User applications will be able to read from the filesystem as
normal - when the operating system sends a read request, the implementation will be instructed
to download the part of the file the cluster belongs to and then respond with the necessary
binary content for that file. The user can specify which files are to be made available via a
command-line interface.

1.3 Aims
This project aims to provide an all-encompassing solution that addresses all the issues faced
that no existing solutions have resolved entirely. This solution will attempt to allow users to
stream multimedia content while meeting the following:

• Users have low and fixed amount of local storage.
• Users have high-speed and high-availability Internet connections.
• Users wish to access read-only publicly accessible content.
• Users should be able to download a file from other peers (via a peer-to-peer instead of

client-server model).
• Files should be split into pieces for distribution.
• Individual files should be distributed so that duplication is eliminated.
• The files should appear to be mounted natively so that existing applications can read

them with no changes required.

1.4 Objectives
• Create a distributed content-addressable file sharing protocol and corresponding imple-

mentation.
• Create a simple virtualised filesystem as a frontend to the file sharing implementation.
• Create a command-line interface to allow the user to select which publicly accessible

files are to be made available.
• Implement pre-existing solutions’ protocols (such as IPFS) as an alternative to the

default file sharing protocol used in the implementation.
• Benchmark (in terms of network usage and speed) the implementation’s file sharing

protocol in contrast with pre-existing solutions such as IPFS.
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1.5 Novelty
The problem this project addresses is worthy of study because it is a growing, inhibitive
and multi-faceted issue, which can only be resolved with a new solution as existing ones
are insufficient to fully address all the aims. This project is novel because it delivers all the
following:

• The implementation is optimised for low storage - that is, if storage is full, older
downloaded chunks will be deleted and if they needed again they will be re-downloaded
given available space. This is contrast to some other solutions, which experience issues
such as disk full errors (Gierth, 2017).

• The implementation’s file sharing protocol is purely content addressable - individual file
contents are hashed only. Some other solutions use an intervening representation which
can lead to duplication (John, 2022).

• The implementation only supports read-only publicly accessibly content. Some other
solutions unnecessarily introduce authentication or multi-user access which is redundant
in this context (Morris et al., 1986).

• The implementation downloads a file from multiple peers which are also downloading and
uploading a file, in contrast to some other solutions which only support an asymmetric
dependency on a single provider (Nielsen et al., 1999).

• The implementation splits files into pieces for distribution, in comparison to some other
solutions which relay the entire file over the network therefore creating a bottleneck
(John Howard, 1988).

• The implementation mounts files natively on the user’s filesystem so existing applications
can read them as if they were stored locally on the user’s disk. Some other solutions only
download the existing files themselves, with no (or experimental and platform-specific
(Magiera and Rataj, 2022)) support for streaming files directly to serve filesystem read
requests.

1.6 Outline
Chapter 1 - Introduction In this chapter I introduce the context of the problem and I state

the aims and objectives of the project.
Chapter 2 - Literature, technology and data survey In this chapter I have a deeper look

into the literature surrounding the problem, evaluate existing solutions and determine
the programming language, tools and libraries that will be utilised in the development of
the introduction.

Chapter 3 - Requirements In this chapter I formulate a list of requirements based on the
work done in the literature, technology and data survey.

Chapter 4 - Design In this chapter I convert the list of requirements into a design for the
resulting implementation.

Chapter 5 - Implementation In this chapter I discuss important aspects of the code of the
implementation.
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Chapter 6 - Testing In this chapter I detail the testing of the implementation that has been
performed in order to ensure that I have met the requirements. I also perform some
benchmarking on multiple operating systems.

Chapter 7 - Conclusions In this chapter I reflect on the work done in the project and the
contributions that have been made to the field.



Chapter 2

Literature, technology and data survey

2.1 Digital consumption of publicly accessible content
Due to the ubiquitous rise of the Internet, consumers are switching away from traditional
forms of accessing content. Video and music streaming services have experienced growth in
contrast to traditional services such as cable and telecommunication companies (Calboli, 2022).
The file sizes of multimedia they deliver have dramatically increased usage of storage on user
devices (Dinneen and Nguyen, 2021). This is a concern because although there has been a
decrease in the price of secondary storage (Kryder and C.S. Kim, 2009) such as hard disk
drives and flash memory, smartphones typically do not have removable or extendable storage
unlike desktop computers (H. Kim, Agrawal, and Ungureanu, 2012). This means consumers
are restricted by the amount of storage they choose at purchase, which is typically lower in
the range available (Mohd Suki, 2013) due to the increased price of more storage deterring
users from buying more expensive models.

2.2 Growing usage of peer-to-peer systems
The reliance on a client-server model (used in protocols such as HTTP) poses a problem
on content providers, as it puts considerable strain on servers to provide high-bandwidth
connections (Benet, 2014a). An alternative being increasing utilised by user communities
involves replacing client-server systems with peer-to-peer ones instead. This results in a
considerable reduction in bandwidth on the content provider, while users experience potentially
higher download speeds (Cunningham, Alexander, and Adilov, 2004). Despite peer-to-peer
systems having a reputation for illegally sharing copyrighted content (Envisional, 2011), content
providers are increasingly turning towards these systems to share their content, including
academic datasets (J.P. Cohen and Lo, 2014; 2016), operating system updates (Warren, 2015)
and television programs (Solheim, 2008).

5
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2.3 Existing solutions

2.3.1 HTTP(S)
HTTP remains one of the most used protocols on the Internet. A study by Schumann et al.
(2022) found that for one particular link in the Americas during 2020, 60 to 70% of IPv4
traffic was HTTP(S), while reaching 90% for a link in Japan. Multiple streaming services such
as Netflix and Spotify deliver content over HTTP, and are usually backed by infrastructure
provided by cloud providers such as Amazon Web Services (Adhikari et al., 2012).
HTTP works by utilising a client-server model. First, a separate protocol called DNS is used
to map domain names to IP address (Mockapetris, 1987). Next, a web browser (the client)
contacts the server over a single TCP connection and can request content using a GET request
(Nielsen et al., 1999) - this has been highlighted as a potential bottleneck in HTTP/1 and
HTTP/2, and prompted a replacement using a new protocol (QUIC, which utilises UDP) for
HTTP/3 (Bishop, 2022). HTTP also has support for partial content requests (Nielsen et al.,
1999), in which byte ranges can be specified instead of downloading the entire file.
HTTP however is cited as a disadvantage in new scenarios, due to the increased demand for
large files to be transported in real-time. Benet (2014a) gives examples of this such as ”hosting
and distributing petabyte datasets” and ”high-volume high-definition on-demand or real-time
media streams”. Efforts such as HTTP/3 and WebSocket (Melnikov and Fette, 2011) have
attempted to address the overhead of the protocol, but most distributors facing these issues
have ”given up HTTP for different data distribution protocols”.

2.3.2 BitTorrent
The BitTorrent protocol is a popular peer-to-peer file sharing protocol (B. Cohen, 2008).
BitTorrent has received significant adoption out of all peer-to-peer protocols, with Sandvine
(2019) measuring 2.46% of downstream and 27.58% of upstream traffic being used for the
protocol. Due to its popularity many content providers are using the protocol (J.P. Cohen and
Lo, 2014; 2016; Solheim, 2008) or a modified version (Warren, 2015) as a form of distribution.
A torrent file can be generated for a collection of files and folders. The torrent file may
include links to individual servers known as ”trackers” (the only component that uses the
client-server model and pre-existing protocols such as HTTP), which is used to help peers
find each other. A BitTorrent client can get a list of peers for a torrent file and contact them
to receive pieces of the files in question before reassembling them (which removes the single
connection bottleneck as seen in client-server models such as HTTP, therefore leading to faster
downloads on average). Pieces are of fixed-length, and the torrent file contains the SHA1 hash
of every piece to ensure it has not been tampered with or corrupted during transit (B. Cohen,
2008).
BitTorrent v1 torrent files do not distinguish between individual files, leading to separate
swarms of peers for each torrent file even if the files they describe are identical. BitTorrent v2
addressed this by splitting individual files into pieces instead of the entire torrent. These pieces
are used to form a Merkle hash tree (or simply Merkle tree), which more efficiently splits and
hashes individual files into tree-like structures so they can be represented by a single root hash
(Norberg, 2020). BitTorrent also supports a distributed hash table (DHT) for peer discovery
instead of using trackers, therefore allowing BitTorrent to be a fully peer-to-peer protocol.
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2.3.3 InterPlanetary File System
The InterPlanetary File System (IPFS), is another peer-to-peer file sharing protocol (Benet,
2014a). Collections of files and folders are represented under a format called UnixFS (John,
2022) which is turn is represented by content identifiers (or CIDs, which are the single root
hashes formed from the Merkle trees of the files) instead of torrent files. Similar to BitTorrent
v2, IPFS uses a Merkle tree, where CIDs can represent folders, files, and their blocks. IPFS
solely uses a DHT for peer discovery, and peers request a list of blocks from others which are
verified by hashing them to determine the CIDs (Schilling, 2022).
The use of CIDs means that IPFS is content-addressable, which BitTorrent is not designed
for (the8472, 2018), but this can still lead to duplication as they are not singular files. IPFS
is also relatively new compared to BitTorrent, with few implementations except for Kubo
(Protocol Labs, 2022) which is implemented in Go, and it only has experimental, unstable and
platform-specific (only Linux and macOS) support (Magiera and Rataj, 2022) for servicing
file cluster read requests (and most implementations of BitTorrent do not either). IPFS
also is designed to focus on future-proofing, as for instance, CIDs are self-describing in what
binary-to-text encoding and hashing algorithms they use (Rataj, 2022). This allows IPFS
implementations to easily upgrade the cryptographic hash functions (i.e. as over time these
may eventually be cryptographic broken) and any other adjustments in CIDs they may make
without substantial difficulty (Benet, 2017).

2.3.4 SFS read-only file system
The SFS read-only file system proposed by Fu, Kaashoek, and Mazières (2002) suggests a
federated alternative to client-server file sharing protocols. It re-uses some components from
the Self-certifying File System by Mazieres (2000) to provide a distributed filesystem for users
to access public, read-only data. Multiple servers offer a mirror of a database signed by the
content provider via public-key cryptography, which contains a Merkle tree of blocks and
inodes used by the files and dictionaries being represented. Blocks and inodes can requested
by the client via identifiers called handles, which are similar to CIDs in IPFS.
The client-server protocol only contains two types of messages - ”one to fetch the signed
handle for the root inode of a filesystem, and one to fetch the data (inode or file content)
for a given handle”. The client also validates the authenticity using the provider’s public key,
meaning the protocol does not use in-transit encryption as it is unnecessary. However, despite
SFS offering a virtual filesystem, it still encourages a client-server model - clients are not
encouraged to share the blocks and inodes they receive (unlike BitTorrent and IPFS) unless
they run a server separately.

2.3.5 Andrew File System
The Andrew File System (AFS) is a distributed multi-user read/write filesystem in which
multiple servers offer a shared virtual filesystem for clients (John Howard, 1988). The use
of multiple servers increases redundancy, and the reason for presenting the appearance of a
normal filesystem was to reduce the need to ”modify existing application programs”. The
designers also wished to ”minimiz[e] network traffic” so the filesystem employs a method in
which files are cached on the client’s computer. When a file read request occurs, the file is
downloaded and cached before being opened. When a write request occurs, the cached copy
is updated and then pushed out to the server only once a closed file request is performed.
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Originally designed for university usage, the AFS was stated by Benet (2014a) to have
”succeeded widely and [to still be] in use today”. An acknowledged disadvantage of the AFS
however is that it copies whole files across the network, even if they have been partially modified
(in contrast to BitTorrent and IPFS, which split files into chunks which are more efficiently
transmitted across the network). A multi-user filesystem seems unnecessary in addressing the
problem area of distributing publicly accessible content - end users do not need to authenticate
nor modify the files they receive, they only need to retrieve them and validate their authenticity.

2.4 Examination of technical requirements
A study by Prechelt (2000) found that development time is quicker for Python compared to
Java, C and C++, although C and C++ have the highest performance and lowest memory
usage, with Java having the noticeably highest memory usage. The study describes scripting
languages such as Python as a ”reasonable” alternative to C and C++, stating that ”relative
runtime and memory-consumption overhead will often be acceptable”. Google (Taylor et al.,
2021) and Microsoft (Thomas, 2019) have stated that 70% of their vulnerabilities are due
to memory safety issues, which places concern on using languages such as C and C++ for a
prototype implementation. Therefore, it can be concluded that Python would be a suitable
language to develop the implementation in due to its ability for quick development and
memory-safety proving to be strong advantages despite its disadvantages.
In terms of whether a command-line interface (CLI) or a graphical user interface (GUI) should
be used for the implementation, Unwin and Hofmann (1999) concludes it ”depends on our
needs and styles of working”. Hultstrand and Olofsson (2015) also agrees, stating that the
”CLI has a steeper learning curve but offers more control”, whereas ”the GUI is helpful and
simple but contains a lot of auto-magic.” They also discovered that 76% of a sample of
Git version control users are using the CLI. Perez De Rosso and Jackson (2013) states that
GUIs utilise Git’s CLI underneath and aim to hide its complexity, therefore suggesting that
development of a CLI also allows a base upon which a GUI may be developed. Given that I
want to offer the user a precise level on control in where they place their files in comparison to
current solutions, it appears a CLI is more suitable.
The version control system Git will be used to keep track of changes to the source code of
the implementation and the dissertation. Compared to Mercurial and Subversion, Git is the
most widely used version control system, being used by nearly 94% of those surveyed by Stack
Overflow (2022) - GitHub and GitLab, both online version control platforms utilising Git,
also comprise over 85% usage out of all version control systems surveyed. As a distributed
version control system, Brindescu et al. (2014) stated that Git offers ”higher quality commits”
compared to a traditional centralised version control system, because commits are likely to
be smaller with ”cohesive changes”. Baudiš (2014) also stated that ”wide adoption and scale
of use clearly indicates that the current [distributed version control] systems have reached
appropriate scalability and reliability levels”. Therefore, it appears Git is the most suitable
choice for a version control system.
As a proof-of-concept and prototype, I have decided that user testing would be unnecessary
because it is only needed to check that the functionality of the implementation is feasible.
Unit and integration testing will be used, and I also expect to manually walk through the
completed implementation as a form of system testing to ensure it works and the requirements
have been met, along with some benchmarking to analyse performance and network usage.
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Given that the implementation will use a CLI, a possible future extension of the concept would
involve a GUI built on top of it (similar to Git GUIs, which utilise the CLI underneath).



Chapter 3

Requirements

Drawing from the exploration of relevant solutions from the literature, technology and data
survey and additional brainstorming, I can reach several requirements for the proposed system.
Requirements are prioritised to be either high, medium or low, which signifies how necessary
they are towards the completion of the project.

3.1 Functional requirements

Implementation-wide Priority
1.1 The implementation will use the Python programming language. High
1.2 The implementation will use a command-line interface (CLI). High
1.3 The implementation will use a custom peer-to-peer file sharing protocol to retrieve

files.
High

1.4 Files will be made available to the user and applications via a read-only filesystem. High
1.5 The user can determine what files will be downloaded using the CLI. High

Content-addressable file sharing protocol Priority
2.1 Files will be split into blocks which will be distributed among peers. High
2.2 Files and their corresponding blocks will have content identifiers. High
2.3 The blocks will be built up to form a Merkle tree representing the file. High
2.4 Files will be distributed individually to reduce duplication. High
2.5 The command-line interface allow users to add peers manually as an alternative

to trackers.
High

2.6 Content identifiers will be future-proof (containing both the base encoding and
the hashing algorithm used).

Low

2.7 Trackers will be used for peer discovery. Low
2.8 The implementation will connect to existing BitTorrent trackers. Low

10
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Read-only filesystem Priority
3.1 The user can determine where files will be placed and their filenames using the

CLI.
High

3.2 Clusters of files will only be downloaded when they are needed. High
3.3 Clusters of files will be cached. Medium
3.4 When the cache storage becomes full, the oldest downloaded clusters will be

deleted.
Medium

3.2 Non-functional requirements

Non-functional requirements Priority
4.1 The implementation’s source code will be tracked using the Git version control

system.
High

4.2 The implementation may download and read files on par with or faster than existing
similar solutions.

Low

4.3 The implementation may have a lower network usage compared to existing similar
solutions.

Low



Chapter 4

Design

It was concluded that in order to fulfil the requirements, the implementation will consist of
two large subsystems - a custom peer-to-peer file sharing protocol (which I shall in future
refer to as ”RAFDP protocol”) to download and distribute files and a virtual filesystem to
expose these files to end-users and applications with minimal disruption. I’ve highlighted areas
where I found the design to require exquisite detail, therefore the following is not exhaustive of
everything that will be included in the implementation.

4.1 Peer-to-peer file sharing protocol

4.1.1 UDP as transport layer protocol
I decided to base the RAFDP protocol on top of the UDP protocol. Due to protocol ossification
(where middleboxes on the Internet block unrecognised protocols or modifications of existing
ones), the only usable protocols are therefore UDP and TCP (McQuistin, Perkins, and Fayed,
2016). As for why UDP was chosen, it carries minimal overhead compared to TCP. I deemed
it unnecessary to have a reliable, stream-orientated protocol as self-contained messages would
offer better performance and can simply be resent at regular intervals if lost.

4.1.2 Splitting files into blocks
The files are split into blocks in the RAFDP protocol because this offers numerous advantages,
such as quicker downloads (as multiple peers can share pieces instead of one source becoming
a single bottleneck, and that other peers that have even only partially downloaded a file may
begin sharing what they have with other peers as there is no need to wait for each peer to
download the whole file) and better error handling (as corrupted pieces can be discarded rather
than the whole file). An illustration of this is seen in figure 4.1.

4.1.3 Content identifier algorithm
I will describe the algorithm that produces content identifiers for files. A CIDv1 hash (used in
IPFS) (Benet, 2016a) consists of the following four components:

• A ”multibase” code stating what base encoding is being used (e.g. base64, base58 etc.).

12
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Figure 4.1: An illustration of the network structure in a peer-to-peer file sharing protocol
(Martin, 2014)

• A ”multicodec” value stating the version of CID used (in this case, 1).
• A ”multicodec” value stating the type of data being hashed (e.g. a MerkleDAG protobuf

which is used in IPFS to describe files).
• A ”multihash” valve stating a self-describing hash containing the hash itself and an

indication of the hashing algorithm used (e.g. sha256).
The types ”multibase”, ”multicodec” and ”multihash” are defined by specifications created by
Protocol Labs, the developer of IPFS, and are described further below:

• A ”multibase” value has the format <base-encoding-character><base-encoded-data>
(Benet, 2016b). The <base-encoding-character> is a value derived from the ”multibase”
table of pre-defined values (e.g. 0 for binary encoding, 9 for decimal encoding etc.).

• A ”multicodec” is an unsigned multiformat varint used as a prefix to identify the data
that follows (Benet, 2015). The values are derived from the ”multicodec” table of
pre-defined values (e.g. 0x70 for a MerkleDAG protobuf).

• A ”multihash” is a self-describing hash. It has the format <varint-hash-function-
code><varint-digest-size-in-bytes><hash-function-output> (Benet, 2014b) where <varint-
hash-function-code> is derived from the ”multicodec” table indicating which hashing
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algorithm was used (e.g. 0x12 for sha2-256).
• The varint referred to before (which we will call the ”unsigned multiformat varint”)

serialises unsigned integers 7 bits at a time, with the most significant bit of each output
byte indicating if there is a continuation byte.

I can therefore conclude that a future-proof hash should self-describe the base encoding and
hashing algorithm used so that any of these can be easily upgraded. It should also contain a
version number which should support this upgrade. The RAFDP protocol will represent files
as chunks forming a Merkle tree, therefore there should be three representations of data that
could be transmitted - a single hash, a pair of hashes and the chunk of data itself. In addition,
I have a magic header at the start (”RAFDP”) in order to reduce ambiguity and confusion
between CIDv1 and my custom hash format.
The hash will be in readable text instead of in a binary format (in comparison CIDv1 allows
either) so it can be easily copied and transmitted. Due to this, the version number will not
be encoded as an unsigned multiformat varint but using my own custom unsigned varint
representation (and to avoid confusion between the two I shall refer to this as ”RAFDP
unsigned varint”). A RAFDP unsigned varint is serialised as follows: the first hex digit indicates
how many more hex digits are remaining, and the remaining hex digits represent the number
encoded as a big endian integer in hex (this therefore gives a possible range of 0 to 1615 − 1).
Therefore, I plan to have RAFDP hashes in the following format:

• A magic header – the string ”RAFDP”.
• A varint representing the version of the RAFDP hash being used.
• A ”multibase” code stating what base encoding is being used.
• A ”multihash” value stating the hashing algorithm used (e.g. SHA256) and the hash

itself.

4.1.4 Merkle tree
A Merkle tree splits data into blocks (Merkle, 1982). Hashes of these blocks are recursively
computed pairwise (each pair of chunks are hashed, and these hashes are hashed in pairs in
turn, and so on) until a single root hash is obtained (as shown in figure 4.2). This offers many
advantages for a file sharing peer-to-peer protocol (Norberg, 2020), including the need to only
share the root hash with another peer so they can initiate a download (as another peer can
request the pairs of child nodes for the root hash, and then the child nodes for each received
child node, and so on until the actual file data is obtained) and it allows quick verification
of any malicious or corrupted blocks that may have been sent by peers so they can be easily
discarded.
Similar to BitTorrent v2, I’ve decided to adapt a fixed 16 KiB piece size. A fixed piece size
ensures there is no ambiguity and inconsistency (as trees would not have varying piece sizes
encoded in them) so peers can reproducibly produce hash trees on files for verification by
assuming this fixed 16 KiB piece size. It would also reduce overhead as the piece size does not
need to be included as part of the RAFDP hash.
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Figure 4.2: Example Merkle tree for a file consisting of 4 blocks (Azaghal, 2012)

4.1.5 BitTorrent trackers
In order to discover peers, BitTorrent uses centralised servers known as ”trackers”. I decided to
make the RAFDP protocol compatible with existing BitTorrent trackers rather than creating
my own custom tracker protocol because I felt it would be beneficial to utilise the vast number
of existing BitTorrent trackers (Zhang et al., 2011).
The BitTorrent tracker protocol utilises HTTP. A client performs a GET request to a URL
of the tracker with HTTP query parameters passed in containing several fields (B. Cohen,
2008). Through experimentation with public trackers, I found that the fields ”info_hash”
(which could be the RAFDP hash), ”peer_id” (a unique identifier generated by the client),
”port”, ”uploaded”, ”downloaded” and ”left” (the latter three in number of bytes) are requisite,
otherwise the trackers returned inconsistent or empty responses. As ”uploaded”, ”downloaded”
and ”left” are designed for the tracker to log stats for BitTorrent torrents (Zelinskie, 2016), I
decided it would be unnecessary for the RAFDP implementation to provide valid values for
these fields, and the trackers seemed to request the same list of peers regardless. The tracker
would in turn then respond to the client with the fields (B. Cohen, 2008) ”interval” (the
number of seconds before the client sends another request) and ”peers” (list of dictionaries of
peers).
I noted that public trackers also only responded when the hash value sent was truncated
(which is also what BitTorrent v2 does as it handles 256-bit long SHA256 hashes (Norberg,
2020)) to a length of 20 bytes (as trackers only anticipated support for SHA1, which was
utilised by BitTorrent v1 (B. Cohen, 2008)). This would instinctively be a concern because
it would increase the chance of a collision between hashes so that a peer could be possibly
be directed to download a conflicting RAFDP hash sharing other, possibly malicious, files
(Cimpanu, 2017). However, as the RAFDP peer downloading the pieces has the full hash,
it can validate each one via the recursive Merkle tree algorithm as belonging to the original
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RAFDP hash, therefore this is not a concern.

4.2 Virtual filesystem

4.2.1 FUSE
First, I decided to attempt to use the popular software interface Filesystem in Userspace (FUSE)
(Vangoor, Tarasov, and Zadok, 2017) to implement the virtual filesystem with. There are
multiple third-party libraries to allow interfacing with FUSE in Python, including python-fuse,
fusepy, pyfuse3 and python-llfuse (Zakharov, 2018). However, it appears all these libraries are
suffering maintenance problems (mxmlnkn, 2022). I noted that fusepy (Honles, 2023) appears
to have a high-level third-party library called fusetree (Costa, 2023), which would allow quicker
development and integration of fuse into my implementation, so I decided to utilise that.
However, I later discovered that the low-level part of fusepy called fusell (which fusetree
utilises) lacks support for Windows. I attempted to test the implementation in macOS but the
library failed with a cryptic error message (as seen in listing 4.1). This therefore restricted my
implementation’s support to only Linux, but then I also discovered the same error message
occurring inconsistently across different Linux distributions. I therefore decided to abandon
FUSE for other options instead.

Listing 4.1: The output and error of the former virtfilesystem.py which used FUSE
V i r t u a l f i l e s y s t em RPC s e r v e r l i s t e n i n g on po r t 7274
Us ing s e l e c t o r : E p o l l S e l e c t o r
Traceback (most r e c e n t c a l l l a s t ) :

F i l e "/home/ james /Documents/ r a f dp / v i r t f i l e s y s t e m . py " , l i n e 113 ,
i n <module>

f u s e t r e e . FuseTree ( rootNode , a r g s . path , f o r e g r ound=True )
F i l e "/home/ james /Documents/ r a f dp / f u s e t r e e / f u s e t r e e . py " , l i n e 59 ,

i n __init__
super ( ) . __init__ ( mountpoint , encod ing=encod ing )

F i l e "/home/ james /Documents/ r a f dp / f u s e l l . py " , l i n e 495 , i n
__init__

a s s e r t chan
A s s e r t i o n E r r o r

4.2.2 SFTP
After issues with FUSE, I then looked at other possible ways of implementing a virtual filesystem.
I noted that SMB seem to have consistent support across Windows, macOS and Linux (Ashcraft
et al., 2021; Fleishman, 2020; Samba Team, 2023) but my supervisor advised me against
reverse-engineering or implementing a server based on the protocol due to its complexity. I
then looked at SFTP and noted there was also strong (although sometimes unofficial) support.
Many Linux distributions feature native support for mounting SFTP file shares as virtual drives
via SSHFS (Marakasov, 2023). There are some third-party applications that add support for
SFTP for Windows (WinFsp (Zissimopoulos, 2022) and Dokany (Stark, 2022)) and macOS
(FUSE for macOS (Fleischer, 2023a) or FUSE-T (Fishman, 2023b) coupled with their own
SSHFS for macOS implementations (Fishman, 2022; Fleischer, 2023b)). I used the Python
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library paramiko (Forcier, 2023) in order to implement the virtual SFTP server that could
present the virtual filesystem as a server share that could be mounted by third-party programs.
For Windows, it appears that WinFsp is currently still being maintained at the time of this
project, while the authors of Dokany are currently looking for new maintainers (Stark, 2022).
The author of WinFsp, Bill Zissimopoulos, also posted some benchmarks showing WinFsp
being considerably faster than Dokany Zissimopoulos, 2016. For these reasons, I decided
to go with WinFsp for Windows. For macOS, between the choices of underlying layers, it
seemed that FUSE-T was the most suitable. This is because the alternative is macFUSE,
which utilises a kernel extension and is therefore prone to breaking with each version of macOS
(Fishman, 2023a) along with requiring the modification of security settings (Apple, 2021). I
then therefore decided to use FUSE-T with SSHFS for macOS.



Chapter 5

Implementation

In terms of programming the implementation, I layered levels of code to successively met
all the functional requirements and cover both subsystems (the RAFDP protocol and virtual
filesystem). I first wrote underlying structures and functions that would be utilised (such as
the Merkle tree implementation), then the class implementing the required functionality for
each subsystem and then finally added a CLI and other interfaces (such as the RAFDP RPC
library (rafdplib.py) to control the daemons implementing each subsystem when necessary.
It’s important to note that what I cover here is not exhaustive (for instance, details of CLI
and daemon communication have been omitted). I’ve only chosen to cover areas which I
particularly are influential and of value.

5.1 Overall system architecture

Figure 5.1: A diagram of the overall system architecture of the implementation

In the diagram shown by figure 5.1, the dotted lines indicate RPC communication (passing

18
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JSON UDP messages to allow control of each daemon) while the solid lines indicate importing
another module. All components in this diagram were written by me - some modules import
functions from third-party libraries which will be described later on.
The overall system consists of two daemons - one for the virtual filesystem (virtfilesystem.py)
and one for the RAFDP protocol (rafdp.py). The RAFDP daemon can run standalone, while
the virtual filesystem daemon starts its own RAFDP daemon in order to utilise the protocol.
The virtual filesystem daemon communicates with the RAFDP daemon utilising the same RPC
protocol the RAFDP CLI uses but with the assistance of a RAFDP RPC library (rafdplib.py)
which providers more direct control and some helper functions.
The RAFDP daemon utilises a Merkle tree representation (core.py) along with a BitTorrent
tracker client (trackerclient.py). A miscellaneous functions library (utils.py) is utilised by all
files shown except the CLIs and it contains commonly re-used code such as the custom varint
implementation and SFTP object creation. Other Python files not included in the diagram are
test_multiple.py which contain the unit and integration tests and demo.py which performs an
automated run of the daemons for system testing.

5.2 RAFDP protocol

5.2.1 Merkle tree
First, I implemented the Merkle tree class which will be utilised by the RAFDP protocol in a
file called core.py. As this was a prototype solution, I used some fixed parameters (specifically,
a chunk size of 16 KiB, a hashing algorithm of SHA2-256 and a base encoding of base58).
As the RAFDP hash is future-proof it can be upgraded to support any changes to these
parameters so this should not be a problem. The algorithm for computing a RAFDP hash uses
some components from the multiformats library (Gogioso, 2023).
The Merkle tree class generates a Merkle tree by first opening the file and hashing each chunk
of 16 KiB, as seen in code listing 5.1. Note that the actual chunk content is not stored in-
memory as shown by the line tree [chunkhash] = (filename, len(chunkhashes), self .chunk_size)
- a pointer (containing the filename, the index of the chunk within the file, and the length of
the chunk itself) is stored instead. This is because large files (such as those being gigabytes in
size) may not fit in a user’s RAM and it would also be unnecessary given the files are present
on the user’s hard drive.

Listing 5.1: Turning a file into a list of hashes
with open ( f i l e name , " rb " ) as f i l e :

whi le True :
chunk = f i l e . r ead ( s e l f . chunk_s i ze )
i f not chunk :

break
chunk = u t i l s . t o v a r i n t ( l en ( chunkhashes ) ) + chunk
chunkhash = s e l f . gene ra te_hash ( chunk )
# p o i n t e r to o f f s e t i n f i l e s t o r e d i n t r e e
t r e e [ chunkhash ] = ( f i l e name , l en ( chunkhashes ) ,

s e l f . chunk_s i ze )
chunkhashes . append ( chunkhash )
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Generating the actual Merkle tree is done by recursively hashing pairs of hashes (or a single
hash if a pair isn’t possible) and adding them to the internal tree representation until a final
root hash is obtained. This is seen in code listing 5.2.

Listing 5.2: Generating the Merkle tree by recursively hashing pairs of hashes
whi le len ( chunkhashes ) > 1 :

newchunkhashes = [ ]
f o r p a i r i n i t e r t o o l s . z i p_ l o n g e s t ( ∗ [ i t e r ( chunkhashes ) ] ∗ 2) :

f i r s t , second = p a i r
i f second i s None :

p a i r = f i r s t
e l s e :

p a i r = f i r s t + " , " + second
chunkhash = s e l f . gene ra te_hash ( p a i r . encode ( " ASCII " ) )
i f chunkhash i n t r e e :

r a i s e Excep t i on ( "Hash␣ de t e c t e d ␣ tw i c e ␣ i n ␣
t r e e ? " )

t r e e [ chunkhash ] = p a i r
newchunkhashes . append ( chunkhash )

chunkhashes = newchunkhashes
r oo tha sh = chunkhashes [ 0 ]

However, when assembling a file streamed from another peer the chunks are stored in memory
because they are only needed ephemerally when the parts of the file corresponding to the
chunks need to be read. There is not an issue with memory usage here because the daemon
detects that the amount of memory available is low and therefore randomly removes nodes
from the Merkle tree class (as seen in code listing 5.3). If they are needed again (i.e. when
the user loads a corresponding part of the file) they can always be re-downloaded from other
peers.

Listing 5.3: Trimming the Merkle tree when running out of RAM
def r e du c e_ t r e e_ s i z e ( s e l f ) :

i f p s u t i l . v i r tua l_memory ( ) . p e r c en t >= 95 :
c h o i c e s = l i s t ( set ( s e l f . t r e e . key s ( ) ) −

set ( s e l f . r o o t h a s h e s ) )
i f len ( c h o i c e s ) > 0 :

del s e l f . t r e e [ random . cho i c e ( c h o i c e s ) ]

5.2.2 Fragmentation and general communication
I realised that conveying binary data in response to requests for hashes would not fit inside a
UDP packet that would successfully pass through the Internet (as gateways drop packets that
are larger than the smallest MTU of the route (Moy, 1998)). I then decided to fragment the
payload into multiple separate and smaller UDP packets (limiting the size to a maximum of
508 bytes (Beejor, 2016)) so that they could be delivered successfully (as seen in code listing
5.4).

Listing 5.4: The code to fragment a packet into multiple smaller prefixed subpackets to avoid
exceeding the MTU

chunk s i z e = 508
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o f f s e t s = l i s t ( range (0 , l en ( to sendhash ) , c hunk s i z e ) )
f o r i ndex , i i n enumerate ( o f f s e t s ) :

t o s endha shpa r t = (1) . to_bytes (1 , " b i g " ) + (1) . to_bytes (1 ,
" b i g " )

t o s endha shpa r t += u t i l s . t o v a r i n t ( i nd ex ) +
u t i l s . t o v a r i n t ( l en ( o f f s e t s ) )

t o s endha shpa r t +=
u t i l s . t o v a r i n t ( l en ( wantedhash . encode ( " a s c i i " ) ) )

t o s endha shpa r t += wantedhash . encode ( " a s c i i " ) +
tosendhash [ i : i + chunk s i z e ]

s o c k e t . s endto ( to s endhashpa r t , p ee r )

Each fragmented packet is prefixed by the following: a varint for the fragment index, a varint for
the number of fragments, a varint denoting the hash the data is represented by, the hash itself
and then the binary data fragment. These parameters allow the receiving peer to reassemble
the fragments into the entire binary data once all of them have been received. If any are lost,
all the fragments will simply be recomputed and resent again once the peer re-requests the
hash, as it does so at a regular interval in a background thread as seen in code listing 5.5.

Listing 5.5: Part of the background thread’s loop code showing the regular sending of ping
messages and requesting of data for missing hashes

f o r pee r i n p e e r s :
i f not p e e r s [ p ee r ] [ " v a l i d " ] :

i f ( t ime . t ime ( ) − p e e r s [ p ee r ] [ " l a s t c o n t a c t " ] ) > 30 :
p e e r s [ p ee r ] [ " l a s t c o n t a c t " ] = t ime . t ime ( )
s o ck e t . s endto ( b"RAFDPPING" , pee r )

e l s e :
f o r mi s s i ngha sh i n o v e r a l l t r e e . g e t_mi s s i ng ( ) :

i f mi s s i ngha sh not in p e e r s [ p ee r ] [ " m i s s i n g " ] :
p e e r s [ p ee r ] [ " m i s s i n g " ] [ m i s s i ngha sh ] =

{" l a s t c o n t a c t " : 0}
i f ( t ime . t ime ( ) −

p e e r s [ p ee r ] [ " m i s s i n g " ] [ m i s s i n gha sh ] [ " l a s t c o n t a c t " ] )
> 5 :
p e e r s [ p ee r ] [ " m i s s i n g " ] [ m i s s i ngha sh ] [ " l a s t c o n t a c t " ]

= t ime . t ime ( )
s o ck e t . s endto ( ( 0 ) . to_byte s (1 , " b i g " ) +

mi s s i n gha sh . encode ( " a s c i i " ) , p ee r )

In the RAFDP protocol (which is contained in rafdp.py, the daemon’s code), apart from ping
and pong messages (to establish that each peer exists and can communicate with each other),
there are only two main types of messages - a request to retrieve to contents for the hash
from another peer and a response of contents for the hash the other peer sends back. The
peers identify the type by the first byte of the message - interpreted as a big-endian integer,
the value is either 0 (for a request) or 1 (for a response). Drilling down for request messages
the rest of the message is simply the hash requested, while for response messages the next
byte denotes whether it is a hash/pair of hashes (which is then followed by the hash or pair of
hashes themselves) or binary data, which is then fragmented (the former of which has been
described previously). Each message’s format is denoted in table 5.1.
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Table 5.1: The formats of all the possible messages in the RAFDP protocol

Message description Message format
A ping message RAFDPPING
A pong message RAFDPPONG
Request (for a hash) 0 (to denote a request for a hash,

big-endian integer)
The hash itself

Response (returning a hash or pair of hashes
for a request message)

1 (to denote a response, big-endian integer)
0 (to denote a response of a hash or pair of
hashes, big-endian integer)
The hash or pair of hashes

Response (returning binary content for a
request message)

1 (to denote a response, big-endian integer)
1 (to denote a response of binary content,
big-endian integer)
Fragment index (as a varint)
The total number of fragments (as a varint)
The length of the hash of the data (as a
varint)
The hash of the data
The data fragment itself

5.3 Virtual filesystem

5.3.1 Prior FUSE work
Even though FUSE was later removed from the implementation due to discovered dependency
maintenance issues and poor dependency multi-platform support, I was able to develop a
proof-of-concept incorporation before discarding it. The fusetree library (Costa, 2023) was
relatively high-level enough that this was quite simple. First, an empty dictionary is created
called rootNode. Objects (when requested to do so by the CLI) initialised from classes (which
inherit from fusetree .nodetypes.BaseFile) represent RAFDP and IPFS files and simulate the
retrieval of bytes when requested by FUSE. The line fusetree .FuseTree(rootNode, args.path,
foreground=True) initialises the FuseTree object which uses this dictionary to present the virtual
filesystem. Code for all of this is seen in code listing 5.6 - note that much of the code for the
virtual filesystem itself is omitted here (such as the RPC server code), along with repeated or
similar instances of code between the IPFSFile and RAFDPFile classes.

Listing 5.6: The prior use of FUSE in virtfilesystem.py
c l a s s RAFDPFile ( f u s e t r e e . node types . Ba s eF i l e ) :

def __init__ ( s e l f , c id , mode=0o444 ) :
super ( ) . __init__ (mode )
s e l f . c i d = c i d
rafdpdaemon . addhash ( c i d )

async def open ( s e l f , mode ) :
return s e l f . __class__ . Handle ( s e l f , s e l f . c i d )
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c l a s s Handle ( f u s e t r e e . node types . F i l eHand l e ) :
def __init__ ( s e l f , node , c i d ) :

super ( ) . __init__ ( node , d i r e c t _ i o=True ,
non s e ekab l e=Fa l s e )

s e l f . c i d = c i d

async def r ead ( s e l f , s i z e , o f f s e t ) :
l o g g i n g . debug ( f "{ s e l f . c i d }␣ (RAFDP) ␣−␣ r e qu e s t e d ␣ by t e s ␣

from␣{ o f f s e t }␣ o f ␣ s i z e ␣{ s i z e }" )
r e s u l t = rafdpdaemon . g e t s i z e o f f s e t f r omh a s h ( s e l f . c id ,

s i z e , o f f s e t )
whi le r e s u l t i s None :

a s y n c i o . s l e e p ( 0 . 1 )
r e s u l t = s e l f . ge thash ( hash )

return r e s u l t

c l a s s I PFSF i l e ( f u s e t r e e . node types . B a s eF i l e ) :
. . .

c l a s s Handle ( f u s e t r e e . node types . F i l eHand l e ) :
. . .

a sync def r ead ( s e l f , s i z e , o f f s e t ) :
l o g g i n g . debug ( f "{ s e l f . c i d }␣ ( IPFS ) ␣−␣ r e qu e s t e d ␣ by t e s ␣

from␣{ o f f s e t }␣ o f ␣ s i z e ␣{ s i z e }" )
r e s u l t = subp r o c e s s . run ( [ " i p f s " , " ca t " , s e l f . c id , "−o" ,

s t r ( o f f s e t ) , "− l " , s t r ( s i z e ) ] ,
s t dou t=subp r o c e s s . PIPE )

i f r e s u l t . r e t u r n c od e != 0 :
r a i s e Excep t i on ( r e s u l t )

return r e s u l t . s t dou t

c l a s s RPCHandler ( s o c k e t s e r v e r . BaseReques tHand le r ) :
def hand l e ( s e l f ) :

. . .
i f data [ "method " ] == " addra fdphash " :

rootNode [ data [ " hash " ] ] = RAFDPFile ( data [ " hash " ] )
e l i f data [ "method " ] == " add i p f s h a s h " :

rootNode [ data [ " hash " ] ] = IPFSF i l e ( data [ " hash " ] )
. . .

rootNode = {}
f u s e t r e e . FuseTree ( rootNode , a r g s . path , f o r e g r ound=True )

5.3.2 SFTP and IPFS
Implementing the virtual SFTP server was somewhat more complex. The code for the file
handle for SFTP (as seen in code listing 5.8) bears some resemblance to that for FUSE, but
substantially more boilerplate is required elsewhere for purposes such as authentication and
file permissions (which were redundant in this case as I am only presenting publicly available
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files on localhost to the user). I also had to provide the functionality of returning the SFTP
attributes of files and folders, which I abstracted by implementing my own custom in-memory
filesystem representation (parts of which are shown in code listing 5.7).

Listing 5.7: Parts of the MemFS in-memory filesystem representation
c l a s s MemFS:

def __init__ ( s e l f ) :
s e l f . f i l e s = {}
s e l f . a d d f i l e (8192 , " 40444 " , "/ " )

def a d d f i l e ( s e l f , f i l e s i z e , mode , path ) :
. . .
SFTPobject = crea teSFTPob jec t ( f i l e s i z e , mode , t ime . t ime ( ) ,

t ime . t ime ( ) , path . name)
s e l f . f i l e s [ s t r ( path ) ] = ( path , SFTPobject )

def l i s t d i r ( s e l f , p a t h t o l i s t ) :
. . .

# Check i f f o l d e r e x i s t s
a t t r s = s e l f . g e t a t t r s ( p a t h t o l i s t )
i f a t t r s i s None or oct ( a t t r s . st_mode ) [ 2 ] != "4" :

return None
# Find i t ems i n f o l d e r
r e t u r n t h e s e = [ ]
f o r f i l e p a t h , SFTPobject i n s e l f . f i l e s . v a l u e s ( ) :

i f p a t h t o l i s t i n f i l e p a t h . p a r e n t s :
r e t u r n t h e s e . append ( SFTPobject )

return r e t u r n t h e s e

Even though it was not an explicit requirement, I was able to extend the virtual filesystem to
support mounting IPFS files. The virtual filesystem calls the IPFS daemon’s CLI (Matthews
and Schilling, 2023), which is required to be installed on the user’s computer beforehand. It
allows requesting bytes for a length and offset in the same way that the RAFDP daemon also
supports. The code listing 5.8 shows the function allowing the virtual SFTP server to present
the range of bytes requested from either the file of the RAFDP hash or the IPFS hash.

Listing 5.8: The code for the file handle for SFTP (supporting RAFDP and IPFS)
def r ead ( s e l f , o f f s e t , l e n g t h ) :

f i l e h a s h = s e l f . f i l e h a s h
i f f i l e h a s h . s t a r t s w i t h ( "RAFDP" ) :

r e s u l t =
rafdpdaemon . g e t s i z e o f f s e t f r omh a s h ( f i l e h a s h ,
l eng th , o f f s e t )

whi le r e s u l t i s None :
t ime . s l e e p ( 0 . 0 1 )
r e s u l t =

rafdpdaemon . g e t s i z e o f f s e t f r omh a s h ( f i l e h a s h ,
l eng th , o f f s e t )

return r e s u l t
e l s e :

r e s u l t = subp r o c e s s . run ( [ " i p f s " , " ca t " , f i l e h a s h ,



CHAPTER 5. IMPLEMENTATION 25

"−o" , s t r ( o f f s e t ) , "− l " , s t r ( l e n g t h ) ] ,
s t dou t=subp r o c e s s . PIPE )

i f r e s u l t . r e t u r n c od e != 0 :
r a i s e Excep t i on ( r e s u l t )

return r e s u l t . s t dou t



Chapter 6

Testing

Testing was done extensively enough such that the full test plan cannot be included in this
chapter, but I will cover some notable test cases here while the rest are included in the
appendices. Several test files were used, including an image (Voicu, 2018) for testing the
Merkle tree and simple fetch-receive requests between RAFDP peers, a text book file (Dickens,
1998) for testing fetching random byte ranges for a hash from another RAFDP peer (as
differences in text are more human-readable and therefore highlights better the cause of bugs
in comparison to binary content such as an image or video) and finally a video (Perréard, 2020)
for system testing as it allowed testing of seeking within a file via the video player to show
that the RAFDP daemon and virtual filesystem combination can load parts of the file when
requested to do so.

6.1 Unit testing
Unit testing involved testing individual functions to ensure that the basic building blocks of
the implementation work as expected. However, as most of the code resided in either complex
classes that relied on network communication or utilised third-party libraries, unit testing
was minimal. Unit tests were written for the custom varint implementation, the Merkle tree
implementation and the simulated in-memory custom filesystem class that I used for the virtual
SFTP server that provided the custom filesystem implementation. All the unit tests are shown
in table 6.1.

Table 6.1: All the unit tests

Test Number Test Case Expected
Result

Actual Result Pass/Fail

26
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1.1 Test that the
custom varint
function can
encode and
decode integers
properly

The varint
function
encodes and
decodes a
random integer
while
successfully
separating and
ignoring
redundant
randomised
data

The varint
function
encoded and
decoded a
random integer
while
successfully
separating and
ignoring
redundant
randomised
data

Pass

2.1 Test that a new
Merkle tree can
be built from a
pre-built one via
requesting
values from
hashes one at a
time

The items in
the new Merkle
tree are the
same as the
pre-built one

The items in
the new Merkle
tree were the
same as the
pre-built one

Pass

3.1 Test that
in-memory
filesystem
representation
for the virtual
SFTP server
works correctly

Existing files
and folders
(some added
during the test)
return the
correct values,
while
non-existing
ones are also
handled

Existing files
and folders
(some added
during the test)
returned the
correct values,
while
non-existing
ones were also
handled

Pass

6.2 Integration testing
Integration testing seemed suitable for testing whether two RAFDP processes communicated
correctly with one another. It was critical to test this as the implementation rests on the
functionality of the underlying peer-to-peer file sharing protocol working correctly, and it would
infeasible for unit testing to be performed on this as functionality is not isolated here. More
specifically, the testing involved one RAFDP peer retrieving content for hashes - either for
a single hash, an entire Merkle tree or multiple possible ranges of the file. A subset of the
integration tests are shown in table 6.2.

Table 6.2: A subset of the integration tests

Test Number Test Case Expected
Result

Actual Result Pass/Fail
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4.1 Test that a
RAFDP peer is
able to obtain
the contents for
a hash from
another RAFDP
peer

The first
RAFDP peer
successfully
receives the
expected bytes
for a hash from
another RAFDP
peer

The first
RAFDP peer
successfully
received the
expected bytes
for a hash from
another RAFDP
peer

Pass

5.1 Test that a
RAFDP peer is
able to obtain
the entire
Merkle tree for
a hash from
another RAFDP
peer

The contents of
the assembled
received file
from the other
peer are the
same as when
the file is read
locally

The contents of
the assembled
received file
from the other
peer were the
same as when
the file is read
locally

Pass

6.1 Test that a
RAFDP peer is
able to fetch a
random byte
range smaller
than the chunk
size, starting
in the file and
ending in the
file, that is
represented by a
hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes less than
16 KiB in size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass

I noted that there were performance issues when spinning up each process and requesting
hashes for satisfying each test. I decided to re-use the same RAFDP processes for a selection
of some tests as I felt they were idempotent - the functionality being tested remained the same
(so the test results would not be compromised) and the performance advantage of utilising the
caching capabilities of each RAFDP process was considered advantageous.
I also discovered that on macOS, the Maximum Transmission Unit (MTU) of UDP is limited
to 9,216 bytes (jusx, 2016). This causes RPC communication to the RAFDP daemon to
fail when the latter sends back the file content (which exceeds the MTU in size) it has
received. This issue does not appear to occur on Windows or Linux, which I speculate that
both operating systems do not impose a lower UDP size limit than the theoretical maximum
of 65,507 bytes over localhost (Zac67, 2022). It was resolved by using the command sudo
sysctl −w net.inet.udp.maxdgram=65535 (jusx, 2016) to increase the UDP max datagram size.
As this change does not survive a reboot, I made my RAFDP implementation when booting
detect it is running on macOS and prompt for admin rights in order to run the command
before starting up the RAFDP daemon (as seen in code listing 6.1). This highlighted the
overall importance that testing holds in uncovering bugs in different environments.
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Listing 6.1: Increasing the UDP max datagram size on macOS
def f ix_udp_macos ( ) :

i f p l a t f o rm . system ( ) == "Darwin " :
maxdatagram = subp r o c e s s . check_output ( [ " s y s c t l " ,

" net . i n e t . udp . maxdgram" ] )
maxdatagram =

i n t ( maxdatagram . decode ( " a s c i i " ) . s t r i p ( ) . s p l i t ( "␣ " ) [ 1 ] )
i f maxdatagram != 65535 :

os . system ( """ o s a s c r i p t −e ’ do s h e l l s c r i p t " sudo s y s c t l
−w net . i n e t . udp . maxdgram=65535" wi th a d m i n i s t r a t o r
p r i v i l e g e s ’ " "" )

The fetching of byte ranges of a file (even validating all possible reads such as those outside
the size of the file) representing a hash from another RAFDP peer was thoroughly tested
because I believed it would be critical that correct byte ranges are returned that are identical
to those returned if reading the file normally as if it were stored locally on the user’s secondary
storage because the virtual filesystem needs to satisfy the requirement of serving the correct
byte ranges as applications will see RAFDP virtual files as normal files.

6.3 System testing
System testing was important because it ensured that the software satisfied the requirements
in the environment where it would be utilised in field conditions, so the tests were designed to
emulate a plausible real-world scenario (adding a file via its RAFDP hash, opening it etc.).
The sequence of tests required manual intervention in which I followed the steps of the testing
procedure and were also ran for each operating system - Windows, macOS and Linux:

1. Start the virtual filesystem.
2. Start a RAFDP process.
3. Add the test video file to the RAFDP process via the CLI.
4. Add the IP address and port of the RAFDP process to the virtual filesystem via the CLI.
5. Add the RAFDP hash for the test video file to the virtual filesystem via the CLI.
6. Assign a location for the RAFDP hash file to appear via the CLI.
7. Open the virtual test video file from where it was assigned to in test 6.
8. Seek the virtual test video file to roughly halfway.

A subset of the systems tests are shown in table 6.3.

Table 6.3: A subset of the system tests

Test Number Test Case Expected
Result

Actual Result Pass/Fail
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8.1 Start the virtual
filesystem

A virtual drive
should
automount on
macOS and
Linux, but not
on Windows.
On all OSes the
window should
show messages
indicating
RAFDP +
RAFDP RPC +
virtual
filesystem RPC
is listening at
port

A virtual drive
automounted
on macOS and
Linux, but not
on Windows.
On all OSes the
window showed
messages
indicating
RAFDP +
RAFDP RPC +
virtual
filesystem RPC
is listening at
port

Pass on
Windows
Pass on macOS
Pass on Linux

8.2 Start a RAFDP
process

A window
should open
with the
message stating
the RAFDP
process is
listening at a
port

A window
opened with the
message stating
the RAFDP
process is
listening at a
port

Pass on
Windows
Pass on macOS
Pass on Linux

8.3 Add a real file
to the RAFDP
process via the
CLI

The CLI should
print out the
RAFDP hash of
the file

The CLI printed
out the RAFDP
hash of the file

Pass on
Windows
Pass on macOS
Pass on Linux

This collective sequence of actions provides a thorough test of the various components of the
implementation interacting together. The virtual filesystem is tested to see if it can mount
and allowing reading from an application while serving the right ranges of data in real-time
without downloading the whole file at once (instead downloading the required pieces). The
RAFDP daemons are tested to see if they can accept the request to add files, RAFDP hashes,
other peers and locations to mount hashes via the CLI along with being able to communicate
relevant information between themselves using the RAFDP protocol.

6.4 Benchmarking
To meet requirements 4.2 and 4.3, I shall now benchmark the implementation in terms of
network usage and speed. I will be comparing the performance of the implementation in
delivering the test video file through the virtual filesystem with the RAFDP and IPFS protocols.
The video is chosen in particular because it has the largest file size in comparison to the other
test files (19.86 MB, in comparison to 2.11 MB for the image and 1.04 MB for the book text
file). Network usage will also be recorded via the tool Wireshark (via its Statistics tool). I was
planning to perform a separate test over localhost but during tests I found that the difference
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in speed over LAN and localhost was negligible (less than 10 seconds difference in file transfer
duration). This shows that network speed of the LAN used in the tests is not a bottleneck on
the implementation.
In each test, the virtual filesystem is booted on each operating system. Another computer
on the network is used to serve the file by running its own RAFDP daemon. The socket
address of the daemon and the hash of the file are added to the virtual filesystem, the file
is mounted at a specific location and OS-specific tools are used to measure the time it
takes to read the entire file. To time file transfers, the command Measure−Command {type
"PATHTOMOUNTEDFILE"> \$null} was used on Windows (in PowerShell), while time cat
’ ’PATHTOMOUNTEDFILE’’> /dev/null was used on Linux and macOS (in Bash and Zsh,
respectively). The results are shown in table 6.4. Speed in MB/s was deduced by dividing the
data transfer in MB by the time taken in seconds.

Table 6.4: All the virtual filesystem benchmark results

Protocol Operating
system

Data
transfer
(MB)

Time
(over
LAN) in
seconds

Time
(from
cache) in
seconds

Speed
(over
LAN) in
MB/s

Speed
(from
cache) in
MB/s

RAFDP Windows 24.529 104.378 20.552 0.235 1.194
RAFDP Linux 24.558 22.327 12.188 1.100 2.015
RAFDP macOS 24.562 61.460 0.006 0.400 4093.723
IPFS Windows 26.327 338.499 312.397 0.078 0.084
IPFS Linux 26.381 21.748 21.045 1.213 1.254
IPFS macOS 26.342 28.217 0.006 0.934 4390.415

From the results, I can reach several conclusions in regards to network usage and speed:
• macOS experiences extraordinary speeds for both protocols when utilising caching. I

speculate that the caching is done either by fuse-t itself or by macOS in regards to the
virtual NFS server fuse-t is leveraging (Fishman, 2023a).

• IPFS transfers slightly more data for the file compared to RAFDP (roughly an additional
2MB). I speculate IPFS performs additional encapsulation of packets compared to the
more minimalistic RAFDP protocol.

• Over LAN for both protocols, the order in terms of speed for both protocols is the same.
Linux is the fastest, followed by macOS, leaving Windows as the slowest (for caching,
macOS overtakes Linux for both protocols).

• For IPFS, the difference in slowness for Windows is more pronounced (slowing down by
a factor of around 3 in comparison to RAFDP), while the difference is slowness between
Linux and macOS has narrowed (from a 3 times difference to merely a 30% difference).

• It’s possible that Linux is faster than the other operating systems because FUSE (which
sshfs utilises) has been partially incorporated into the Linux kernel (Nödler, 2005), while
the libraries WinFsp (for Windows) and fuse-t (for macOS) run entirely in userspace and
so would be slower.

• Overall, RAFDP is much faster on Windows compared to IPFS (3 times faster, and
16 times faster for caching), on par with Linux (but twice as faster for caching) and
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somewhat slower than macOS (being approximately twice as slow over LAN, but identical
timings in terms of caching).



Chapter 7

Conclusions

7.1 Contributions
This dissertation has contributed extensively to the field of peer-to-peer file sharing protocols
and virtual filesystems. The following list is not exhaustive but highlights the major contributions
this project has made to the field:

• The first simple and streamlined peer-to-peer content-addressable file-transfer protocol.
Existing protocols such as IPFS are excessively complicated (such that there are few
existing third-party implementations) while BitTorrent is not content-addressable.

• The first reliable combination of a content-addressable file-transfer protocol with a virtual
filesystem that allows files to be read natively by the operating system and only serving
the parts that have been requested instead of the entire file. Other solutions such as
IPFS only have an experimental and platform-specific virtual filesystem implementation
(unlike the solution proposed here which supports Windows, Linux and macOS).

• A thorough literature, data and technology survey which examines the current state of
the art of the area and highlights the fact that none of the solutions can fully resolve
the problems faced except the solution developed in this dissertation.

7.2 Future Work
Despite the project’s success, I have identified a few limitations that could be addressed in the
future.
As mentioned in the Testing section, I discovered that macOS limits the UDP max datagram
size to 9,216 bytes, which interferes with RPC communication between the RAFDP daemon
and CLI. Although a solution was implemented which temporarily (i.e. until reboot) raises
the limit, future work could involve resolving the issue entirely by either performing my own
custom fragmentation of the UDP datagrams in the RPC communication (re-using the same
method as stated in the Implementation for the RAFDP protocol itself) or re-architecturing the
RPC protocol to use a different transmission mechanism (such as using TCP for the protocol
instead).
BitTorrent was not integrated into the implementation as a possible file transfer protocol.

33



CHAPTER 7. CONCLUSIONS 34

This is because it is not natively content addressable so it will be difficult to integrate in as
the implementation relies on CIDs. A representation of the torrent file known as an infohash
(Boyd, 2020) does exist, but as torrents can contain multiple files, it is ambiguous which file
the infohash is referring to. Possible future work if BitTorrent is integrated in would either be
incorporating the path of a particular file in the torrent into the infohash to create a proper
CID or allowing the user to specify which file they want to download from the torrent via the
CLI.

7.3 Reflection
Overall, this project has gone extremely well. I was motivated to fully resolve the problem I
described in the introduction and literature, technology and data survey through the develop-
ment of a software implementation, and I feel this has been achieved as all requirements listed
in the Requirements section have been met. Particularly commendable is meeting requirements
4.2 and 4.3, where contrary to my expectations the RAFDP protocol served files to the virtual
filesystem much faster on Windows (particularly for caching), on par with Linux (but faster for
caching) and somewhat slower than macOS compared to IPFS. This is because I had assumed
that IPFS protocol has multiple developers and has been developed over a longer period of
time so it would be engineered for consistent better performance, but it appears its complexity
(as IPFS contains multiple subsystems for file transfer protocols, peer discovery etc. (Paisano
and Schilling, 2023)) has diminished its performance on Windows in comparison to the simpler
RAFDP protocol. This project has broken new ground in the area of peer-to-peer file transfer
protocols and virtual filesystems and will revolutionise the way in which these activities are
conducted.
(This dissertation has 10,019 words)
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Appendix A

Full test plan

A.1 Unit testing

Test Number Test Case Expected
Result

Actual Result Pass/Fail

1.1 Test that the
custom varint
function can
encode and
decode integers
properly

The varint
function
encodes and
decodes a
random integer
while
successfully
separating and
ignoring
redundant
randomised
data

The varint
function
encoded and
decoded a
random integer
while
successfully
separating and
ignoring
redundant
randomised
data

Pass

2.1 Test that a new
Merkle tree can
be built from a
pre-built one via
requesting
values from
hashes one at a
time

The items in
the new Merkle
tree are the
same as the
pre-built one

The items in
the new Merkle
tree were the
same as the
pre-built one

Pass
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3.1 Test that
in-memory
filesystem
representation
for the virtual
SFTP server
works correctly

Existing files
and folders
(some added
during the test)
return the
correct values,
while
non-existing
ones are also
handled

Existing files
and folders
(some added
during the test)
returned the
correct values,
while
non-existing
ones were also
handled

Pass

A.2 Integration testing

Test Number Test Case Expected
Result

Actual Result Pass/Fail

4.1 Test that a
RAFDP peer is
able to obtain
the contents for
a hash from
another RAFDP
peer

The first
RAFDP peer
successfully
receives the
expected bytes
for a hash from
another RAFDP
peer

The first
RAFDP peer
successfully
received the
expected bytes
for a hash from
another RAFDP
peer

Pass

5.1 Test that a
RAFDP peer is
able to obtain
the entire
Merkle tree for
a hash from
another RAFDP
peer

The contents of
the assembled
received file
from the other
peer are the
same as when
the file is read
locally

The contents of
the assembled
received file
from the other
peer were the
same as when
the file is read
locally

Pass

6.1 Test that a
RAFDP peer is
able to fetch a
random byte
range smaller
than the chunk
size, starting
in the file and
ending in the
file, that is
represented by a
hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes less than
16 KiB in size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass
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6.2 Test that a
RAFDP peer is
able to fetch a
random byte
range smaller
than the chunk
size, starting
in the file and
ending beyond
the end of the
file, that is
represented by a
hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes less than
16 KiB in size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass

6.3 Test that a
RAFDP peer is
able to fetch a
random byte
range smaller
than the chunk
size, starting
beyond the end
of the file and
ending beyond
the end of the
file, that is
represented by a
hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes less than
16 KiB in size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass

6.4 Test that a
RAFDP peer is
able to fetch a
random byte
range larger
than the chunk
size, starting
in the file and
ending in the
file, that is
represented by a
hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes more than
16 KiB in size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass
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6.5 Test that a
RAFDP peer is
able to fetch a
random byte
range larger
than the chunk
size, starting
in the file and
ending beyond
the end of the
file, that is
represented by a
hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes more than
16 KiB in size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass

6.6 Test that a
RAFDP peer is
able to fetch a
random byte
range larger
than the chunk
size, starting
beyond the end
of the file and
ending beyond
the end of the
file, that is
represented by a
hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes more than
16 KiB in size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass

6.7 Test that a
RAFDP peer is
able to fetch a
random byte
range the same
size as the
chunk size,
starting in the
file and ending
in the file, that
is represented
by a hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes 16 KiB in
size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass
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6.8 Test that a
RAFDP peer is
able to fetch a
random byte
range the same
size as the
chunk size,
starting in the
file and ending
beyond the end
of the file, that
is represented
by a hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes 16 KiB in
size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass

6.9 Test that a
RAFDP peer is
able to fetch a
random byte
range the same
size as the
chunk size,
starting
beyond the end
of the file and
ending beyond
the end of the
file, that is
represented by a
hash from
another RAFDP
peer

The other
RAFDP peer
returns an
identical byte
range to that
which would be
returned if the
file was read
locally (in this
case, some
bytes 16 KiB in
size)

The other
RAFDP peer
returned an
identical byte
range that
matched the
one read from
the file locally

Pass

7.1 Test that two
RAFDP peers
can find each
other using a
BitTorrent
tracker

Each peer has
the other peer
in its tracker list

Each peer had
the other peer
in its tracker list

Pass

A.3 System testing

Test Number Test Case Expected
Result

Actual Result Pass/Fail



APPENDIX A. FULL TEST PLAN 47

8.1 Start the virtual
filesystem

A virtual drive
should
automount on
macOS and
Linux, but not
on Windows.
On all OSes the
window should
show messages
indicating
RAFDP +
RAFDP RPC +
virtual
filesystem RPC
is listening at
port

A virtual drive
automounted
on macOS and
Linux, but not
on Windows.
On all OSes the
window showed
messages
indicating
RAFDP +
RAFDP RPC +
virtual
filesystem RPC
is listening at
port

Pass on
Windows
Pass on macOS
Pass on Linux

8.2 Start a RAFDP
process

A window
should open
with the
message stating
the RAFDP
process is
listening at a
port

A window
opened with the
message stating
the RAFDP
process is
listening at a
port

Pass on
Windows
Pass on macOS
Pass on Linux

8.3 Add a real file
to the RAFDP
process via the
CLI

The CLI should
print out the
RAFDP hash of
the file

The CLI printed
out the RAFDP
hash of the file

Pass on
Windows
Pass on macOS
Pass on Linux

8.4 Add the IP
address and
port of the
RAFDP process
to the virtual
filesystem via
the CLI

The CLI should
print out the IP
address and the
port of the peer
added

The CLI printed
out the IP
address and the
port of the peer
added

Pass on
Windows
Pass on macOS
Pass on Linux

8.5 Add the
RAFDP hash
for a test video
file to the
virtual
filesystem via
the CLI

The CLI should
state the file
has been added
successfully

The CLI stated
the file had
been added
successfully

Pass on
Windows
Pass on macOS
Pass on Linux

8.6 Assign a
location for the
RAFDP hash
file to appear
via the CLI

The virtual test
video file should
appear at the
assigned
location

The virtual test
video file
appeared at the
assigned
location

Pass on
Windows
Pass on macOS
Pass on Linux
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8.7 Open the virtual
test video file
from where it
was assigned to
in 8.6

The virtual test
video file should
open
successfully and
start playing

The virtual test
video file
opened
successfully and
started playing

Pass on
Windows
Pass on macOS
Pass on Linux

8.8 Seek the virtual
test video file to
roughly halfway

The virtual test
video file should
continue playing
from the new
position after a
delay

The virtual test
video file
continued
playing from the
new position
after a delay

Pass on
Windows
Pass on macOS
Pass on Linux
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